1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Производство гормона и его биологическая роль

ПОЛОВЫЕ ГОРМОНЫ И ИХ БИОЛОГИЧЕСКАЯ РОЛЬ

Мужские половые гормоны (андрогены, от греч. andros — мужчина) —тестостерон и дигидротестостерон. Синтез андрогенов осуществляется главным образом в семенниках и частично в яичниках и надпочечниках. Эти гормоны действуют в ядре клетки, активируя синтез ДНК и син­тез белков в мышечной ткани, печени, почках, оказы­вают влияние на развитие головного мозга, в частности на половую дифференцировку гипоталамуса в эмбрио­нальном периоде. Андрогены стимулируют развитие по­ловых органов и желез, а в период полового созрева­ния — вторичных половых признаков у мужчин.

Женские половые гормоны — эстрогены (oistrus — страст­ное влечение) ипрогестерон (от лат. pro — в пользу и gestatio — беременность). Среди эстрогенов выделяютэстрадиол, эстрон, эстриол.

Эстрогены синтезируются в основном в яичниках и желтом теле, небольшое их количество синтезируется в надпочечни­ках и семенниках.

Эстрогены — гормоны анаболического действия. Они активируют синтез специфических белков, влияющих на рост и дифференцировку клеток, синтез белков в органах-мишенях; однако этот анаболический эффект у них менее выражен, чем у андрогенов. Более эффективно эстрогены действуют на жировой обмен, препятствуя отложению жиров в печени, усиливают вы­ведение холестерина из организма и способствуют уменьшению его уровня в крови. Эстрогены регулируют развитие органов женской половой сферы, формирование вторичных половых при­знаков, пролиферативные процессы в матке, развитие молоч­ных желез во время беременности. Прогестерон тормозит сокра­щение матки, готовит слизистую матки к беременности, сти­мулирует разрастание молочных ходов и лактации.

Во время беременности формируется своеобразный эндок­ринный орган — плацента, который образует систему плод — плацента (фетоплацентарная система). В ней образуется ряд гормонов белковой(хорионический гонадотропин, плацентарный лактоген, тиреотропин) и стероидной (эстрогены, прогестерон) природы.

МЕХАНИЗМЫ ДЕЙСТВИЯ ЭНДОКРИННОЙ СИСТЕМЫ.

Эндокринная система — совокупность желез внутренней секреции и некоторых специализированных эндокринных клеток в составе тканей, для которых эндокринная функция не является единственной (например, поджелудочная железа обладает не только эндокринной, но и экзокринной функциями). Любой гормон является одним из ее участников и управляет определенными метаболическими реакциями. При этом внутри эндокринной системы существуют уровни регуляции — одни железы обладают способностью управлять другими.

ОБЩАЯ СХЕМА РЕАЛИЗАЦИИ ЭНДОКРИННЫХ ФУНКЦИЙ В ОРГАНИЗМЕ.

Данная схема включает в себя высшие уровни регуляции в эндокринной системе — гипоталамус и гипофиз, вырабатывающие гормоны, которые сами влияют на процессы синтеза и секреции гормонов других эндокринных клеток.

Из этой же схемы видно, что скорость синтеза и секреции гормонов может изменяться также под действием гормонов из других желез или в результате стимуляции негормональными метаболитами.

Мы видим также наличие отрицательных обратных связей (-) — торможение синтеза и(или) секреции после устранения первичного фактора, вызвавшего ускорение продукции гормона.

В результате содержание гормона в крови поддерживается на определенном уровне, который зависит от функционального состояния организма.

Кроме того, организм обычно создает небольшой резерв отдельных гормонов в крови (на представленной схеме этого не видно). Существование такого резерва возможно потому, что в крови многие гормоны находятся в связанном со специальными транспортными белками состоянии. Например, тироксин связан с тироксин-связывающим глобулином, а глюкокортикостероиды — с белком транскортином. Две формы таких гормонов — связанная с транспортными белками и свободная — находятся в крови в состоянии динамического равновесия.

Это значит, что при разрушении свободных форм таких гормонов будет происходить диссоциация связанной формы и концентрация гормона в крови будет поддерживаться на относительно постоянном уровне. Таким образом, комплекс какого-либо гормона с транспортным белком может рассматриваться как резерв этого гормона в организме.

Один из самых важных вопросов — это вопрос о том, какие изменения метаболических процессов наблюдаются под действием гормонов. Назовем этот раздел:

ЭФФЕКТЫ, КОТОРЫЕ НАБЛЮДАЮТСЯ В КЛЕТКАХ-МИШЕНЯХ ПОД ВЛИЯНИЕМ ГОРМОНОВ.

Очень важно, что гормоны не вызывают никаких новых метаболических реакций в клетке-мишени. Они лишь образуют комплекс с белком-рецептором. В результате передачи гормонального сигнала в клетке-мишени происходит включение или выключение клеточных реакций, обеспечивающих клеточный ответ.

При этом в клетке-мишени могут наблюдаются следующие основные эффекты:

1) Изменение скорости биосинтеза отдельных белков (в том числе белков-ферментов);

2) Изменение активности уже существующих ферментов (например, в результате фосфорилирования — как уже было показано на примере аденилатциклазной системы;

3) Изменение проницаемости мембран в клетках-мишенях для отдельных веществ или ионов (например, для Са +2 ).

Уже было сказано о механизмах узнавания гормонов — гормон взаимодействует с клеткой-мишенью только при наличии специального белка-рецептора, (строение рецепторов и их локализация в клетке уже разбирались). Добавим, что связывание гормона с рецептором зависит от физико-химических параметров среды — от рН и концентрации различных ионов.

Особое значение имеет количество молекул белка-рецептора на наружной мембране или внутри клетки-мишени. Оно изменяется в зависимости от физиологического состояния организма, при заболеваниях или под влиянием лекарственных средств. А это означает, что при разных условиях и реакция клетки-мишени на действие гормона будет различной.

БИОСИНТЕЗ и СЕКРЕЦИЯ ГОРМОНОВ РАЗЛИЧНОГО СТРОЕНИЯ

В процессе образования белковых и пептидных гормонов в клетках эндокринных желез происходит образование полипептида, не обладающего гормональной активностью. Но такая молекула в своем составе имеет фрагмент(ы), содержащий(е) аминокислотную последовательность данного гормона. Такая белковая молекула называется пре-про-гормоном и имеет в своем составе (обычно на N-конце) структуру, которая называется лидерной или сигнальной последовательностью (пре-). Эта структура представлена гидрофобными радикалами и нужна для прохождения этой молекулы от рибосом через липидные слои мембран внутрь цистерн эндоплазматического ретикулума (ЭПР). При этом, во время перехода молекулы через мембрану в результате ограниченного протеолиза лидерная (пре-) последовательность отщепляется и внутри ЭПР оказывается прогормон. Затем через систему ЭПР прогормон транспортируется в комплекс Гольджи и здесь заканчивается созревание гормона. Вновь в результате гидролиза под действием специфических протеиназ отщепляется оставшийся (N-концевой) фрагмент (про-участок). Образованная молекула гормона, обладающая специфической биологической активностью поступает в секреторные пузырьки и накапливается до момента секреции.

При синтезе гормонов из числа сложных белков гликопротеинов (например, фолликулостимулирующего (ФСГ) или тиреотропного (ТТГ) гормонов гипофиза) в процессе созревания происходит включение углеводного компонента в структуру гормона.

Может происходить и внерибосомальный синтез. Так синтезируется трипептид тиролиберин (гормон гипоталамуса).

Гормоны — производные аминокислот

Из тирозина синтезируются гормоны мозгового слоя надпочечников АДРЕНАЛИН и НОРАДРЕНАЛИН, а также ЙОДСОДЕРЖАЩИЕ ГОРМОНЫ ЩИТОВИДНОЙ ЖЕЛЕЗЫ. В ходе синтеза адреналина и норадреналина тирозин подвергается гидроксилированию, декарбоксилированию и метилированию с участием активной формы аминокислоты метионина.

В щитовидной железе происходит синтез йодсодержащих гормонов трийодтиронина и тироксина (тетрайодтиронина). В ходе синтеза происходит йодирование фенольной группы тирозина. Особый интерес представляет метаболизм иода в щитовидной железе. Молекула гликопротеина тиреоглобулина (ТГ) имеет молекулярную массу более 650 кДа. При этом в составе молекулы ТГ около 10% массы — углеводы и до 1% — йод. Это зависит от количества иода в пище. В полипептиде ТГ — 115 остатков тирозина, которые иодируются окисленным с помощью специального фермента — тиреопероксидазы — йодом. Эта реакция называется органификацией йода и происходит в фолликулах щитовидной железы. В результате из остатков тирозина образуются моно- и ди-иодтирозин. Из них примерно 30% остатков в результате конденсации могутпревратитьться в три- и тетра- иодтиронины. Конденсация и иодирование идут с участием одного и того же фермента — тиреопероксидазы. Дальнейшее созревание гормонов щитовидной железы происходит в железистых клетках — ТГ поглощается клетками путем эндоцитоза и образуется вторичная лизосома в результате слияния лизосомы с поглощенным белком ТГ.

Протеолитические ферменты лизосом обеспечивают гидролиз ТГ и образование Т3 и Т4, которые выделяются во внеклеточное пространство. А моно- и дииодтирозин деиодируются с помощью специального фермента деиодиназы и иод повторно может подвергаться органификации. Для синтеза тиреоидных гормонов характерным является механизм торможения секреции по типу отрицательной обратной связи (Т3 и Т4 угнетают выделение ТТГ).

Стероидные гормоны синтезируются из холестерина (27 углеродных атомов), а холестерин синтезируется из ацетил-КоА.

Холестерин превращается в стероидные гормоны в результате следующих реакций:

— отщепление бокового радикала

— образование дополнительных боковых радикалов в результате реакции гидроксилирования с помощью специальных ферментов монооксигеназ (гидроксилаз) — чаще всего в 11-м, 17-м, и 21-м положениях (иногда в 18-м). На первом этапе синтеза стероидных гормонов сначала образуются предшественники (прегненолон и прогестерон), а затем другие гормоны (кортизол, альдостерон, половые гормоны). Из кортикостероидов могут образоваться альдостерон, минералокортикоиды.

Регулируется со стороны ЦНС. Синтезированные гормоны накапливаются в секреторных гранулах. Под действием нервных импульсов или под влиянием сигналов из других эндокринных желез (тропные гормоны) в результате экзоцитоза происходит дегрануляция и выход гормона в кровь.

Механизмы регуляции в целом были представлены в схеме механизма реализации эндокринной функции.

Транспорт гормонов определяется их растворимостью. Гормоны, имеющие гидрофильную природу (например, белково-пептидные гормоны) обычно транспортируются кровью в свободном виде. Стероидные гормоны, йодсодержащие гормоны щитовидной железы транспортируются в виде комплексов с белками плазмы крови. Это могут быть специфические транспортные белки (транспортные низкомолекулярные глобулины, тироксинсвязывающий белок; транспортирующий кортикостероиды белок транскортин) и неспецифический транспорт (альбумины).

Уже говорилось о том, что концентрация гормонов в кровяном русле очень низка. И может меняться в соответствии с физиологическим состоянием организма. При снижении содержания отдельных гормонов развивается состояние, характеризуемое как гипофункция соответствующей железы. И, наоборот, повышение содержания гормона — это гиперфункция.

Постоянство концентрации гормонов в крови обеспечивается также процессами катаболизма гормонов.

Белково-пептидные гормоны подвергаются протеолизу, распадаются до отдельных аминокислот. Эти аминокислоты вступают дальше в реакции дезаминирования, декарбоксилирования, трансаминирования и распадаются до до конечных продуктов: NH3, CO2 и Н2О.

Читать еще:  Фиброма яичника что это такое

Гормоны — производные аминокислот подвергаются окислительному дезаминированию и дальнейшему окислению до СО2 и Н2О. Стероидные гормоны распадаются иначе. В организме нет ферментных систем, которые обеспечивали бы их распад. Что же происходит при их катаболизме ?

В основном происходит модификация боковых радикалов. Вводятся дополнительные гидроксильные группы. Гормоны становятся более гидрофильными. Образуются молекулы, представляющие собой структуру стерана, у которого в 17-м положении находится кетогруппа. В таком виде продукты катаболизма стероидных половых гормонов выводятся с мочой и называются 17-КЕТОСТЕРОИДЫ. Определение их количества в моче и крови показывает содержание в организме половых гормонов.

Общая характеристика гормонов, химическая структура и билогическая роль

Гормоны-это биологически активные вещества , которые синтезируются в железах внутренней секреции, выделяются в кровь и выполняют в организме регуляторную функцию всех процессов организма.

Основные места синтеза гормонов: центральная нервная система, надпочечники, эпифиз, щитовидная железа, гипоталамус, аденогипофиз, околощитовидные железы, желудочно-кишечный тракт, печень, кровь, плацента, яичники, яички, почки.

Гормоны делятся на 3 группы: 1.Пептидные-инсулин, гликогон, окситоцин, вазаприсин, самототропин и т.д. 2.Стероидные-кортикостерон, андростерон, тестостерон. Женские-эстрогены. 3.Прочие гормоны-тероксин(гормон щитовидной железы, адреналин). Гормоны характеризуются:

— специфичностью действия, т. е. один гормон изменяет только одну функцию;

— относительной видовой специфичностью, т. е. действуют одинаково в организме человека и животных;

— влиянием на синтез веществ;

— действием при определенных физико-химических и биологических условиях;

— разным действием в зависимости от дозы;

— стойкостью к повышению и понижению температуры.

Гормоны регулируют все физиологические процессы в организме, воздействуют на обмен веществ, регулируют клеточную активность, способствуют проникновению продуктов обмена через клеточные мембраны, обеспечивают ответную реакцию организма на изменение внешней и внутренней среды. С гормонами связана функция размножения, рост и развитие организма, смена различных возрастных периодов. В органах и тканях гормоны быстро разрушаются, поэтому для длительного действия необходимо их постоянное выделение в кровь и лимфу.

Все гормоны имеют несколько важных свойств, которые отличают их от других биологически активных веществ:

1. Гормоны вырабатываются в клетках эндокринных желез и секретируются в кровь.

2. Все гормоны являются чрезвычайно активными веществами, они вырабатываются в малых дозировках (0,001-0,01 моль/л), но оказывают выраженный и быстрый биологический эффект.

3. Гормоны специфически воздействуют на органы и ткани посредством рецепторов. Они подходят к рецептору как ключ к замку, а потому воздействуют только на восприимчивые клетки и ткани.

4. Гормоны отличаются тем, что имеют определенный ритм секреции, например, гормоны коры надпочечников имеют суточный ритм секреции, а иногда ритм является месячным (половые гормоны у женщин) или интенсивность секреции изменяется в течение более продолжительного периода времени (сезонные ритмы).

Исходя из химического строения, гормоны делят на три группы. К первой группе относят пептидные и белковые гормоны. Пептидами являются, например, окситоцин, вазопрессин. Среди белковых гормонов имеются как простые белки (инсулин, глюкагон, соматотропин, пролактин и др.), так и сложные — гликопротеины (фоллитропин, лютропин). Вторая группа — амины — объединяет гормоны, близкие по структуре аминокислотам — тирозину и триптофану (тиреоидные гормоны, адреналин, норадреналин). Третью группу составляют стероидные гормоны, которые являются производными холестерина. Среди стероидных гормонов — все половые гормоны и гормоны коры надпочечников — кортикостероиды.

Биологическая роль гормонов

Гормоны контролируют основные процессы жизнедеятельности организма на всех этапах его развития с момента зарождения. Они влияют на все виды обмена веществ в организме, активность генов, рост и дифференцировку тканей, формирование пола и размножение, адаптацию к меняющимся условиям среды, поддержание постоянства внутренней среды организма (гомеостаз), поведение и многие другие процессы. Совокупность регулирующего воздействия различных гормонов на функции организма называется гормональной регуляцией.

Избыточное образование или недостаток того или иного гормона в организме человека приводит к эндокринным заболеваниям. Например, следствием недостатка гормонов щитовидной железы в организме являются кретинизм, микседема, а их избытка — базедова болезнь и тиреотоксикоз; нарушение функций поджелудочной железы может сопровождаться дефицитом гормона инсулина и, как следствие, сахарным диабетом.

studopedia.org — Студопедия.Орг — 2014-2020 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.002 с) .

Конспекты к гос экзаменам для студентов биологов

18. Гормоны, классификация и биологическая роль

Гормоны – это органические вещества, которые образуются в тканях одного типа (эндокринные железы, или железы внутренней секреции), поступают в кровь, переносятся по кровяному руслу в ткани другого типа (ткани-мишени), где оказывают своё биологическое действие (т. е. регулируют обмен веществ, поведение и физиологические функции организма, а также рост, деление и дифференцировку клеток).

Железами внутренней секреции, или эндокринными, называют железы, не имеющие выводных протоков. Продукты своей жизнедеятельности — гормоны — они выделяют во внутреннюю среду организма, т. е. в кровь, лимфу, тканевую жидкость. Действие гормонов основано на стимуляции или угнетении каталитической функции некоторых ферментов, а также воздействии на их биосинтез путем активации или угнетения соответствующих генов. Деятельность желез внутренней секреции играет основную роль в регуляции длительно протекающих процессов:

  • обмена веществ,
  • роста,
  • умственного, физического и полового развития,
  • приспособления организма к меняющимся условиям внешней и внутренней среды,
  • обеспечении постоянства важнейших физиологических показателей (гомеостаза),
  • в реакциях организма на стресс.

При нарушении деятельности желез внутренней секреции возникают заболевания, называемые эндокринными. Нарушения могут быть связаны либо с усиленной (по сравнению с нормой) деятельностью железы — гиперфункцией, при которой образуется и выделяется в кровь увеличенное количество гормона, либо с пониженной деятельностью железы —гипофункцией, сопровождаемой обратным результатом. К важнейшим железам внутренней секреции относятся:

Эндокринной функцией обладает и гипоталамус (подбугровая область промежуточного мозга). Поджелудочная и половые железы являются железами смешанной секреции, так как кроме гормонов они вырабатывают секреты, поступающие по выводным протокам, т. е. выполняют функции и желез внешней секреции.

Щитовидная железа (масса 16—23 г) расположена по бокам трахеи чуть ниже щитовидного хряща гортани. Гормоны щитовидной железы (тироксин и трииодтиронин) в своем составе имеют иод, поступление которого с водой и пищей является необходимым условием ее нормального функционирования. Гормоны щитовидной железы регулируют обмен веществ, усиливают окислительные процессы в клетках и расщепление гликогена в печени, влияют на рост, развитие и дифференцировку тканей, а также на деятельность нервной системы. При гиперфункции железы развивается базедова болезнь.

Надпочечники (масса 12 г) — парные железы, прилегающие к верхним полюсам почек. Как и почки, надпочечники имеют два слоя:

  • наружный — корковый,
  • внутренний — мозговой, являющиеся самостоятельными секреторными органами, вырабатывающими разные гормоны с различным характером действия.

Клетками коркового слоя синтезируются гормоны, регулирующие минеральный, углеводный, белковый и жировой обмен. Мозговым слоем надпочечников вырабатываются гормоны адреналин и норадреналин. Они выделяются при сильных эмоциях —- гневе, испуге, боли, опасности. В результате происходит перестройка функций организма в условиях действия чрезвычайных раздражителей и мобилизация сил организма для перенесения стрессовых ситуаций.

Поджелудочная железа имеет особые островковые клетки, которые вырабатывают гормоны инсулин и глюкагон, регулирующие углеводный обмен в организме. Так, инсулин увеличивает потребление глюкозы клетками, способствует превращению глюкозы в гликоген, уменьшая таким образом количество сахара в крови. При недостаточном образовании инсулина уровень глюкозы в крови повышается, что приводит к развитию болезни сахарный диабет. Другой гормон поджелудочной железы — глюкагон —является антагонистом инсулина и оказывает противоположное действие, т. е. усиливает расщепление гликогена до глюкозы, повышая ее содержание в крови.

Важнейшей железой эндокринной системы организма человека является гипофиз, или нижний придаток мозга (масса 0,5 г). В нем образуются гормоны, стимулирующие функции других эндокринных желез. В гипофизе выделяют три доли: переднюю, среднюю и заднюю, — и каждая из них вырабатывает разные гормоны. Так, в передней доле гипофиза вырабатываются гормоны, стимулирующие синтез и секрецию гормонов щитовидной железы (тиреотропин), надпочечников (кортикотропин), половых желез (гонадотропин), а также гормон роста (соматотропин).

Половые железы — семенники, или яички, у мужчин и яичники у женщин — относятся к железам смешанной секреции. Семенники вырабатывают гормоны андрогены, а яичники —эстрогены. Они стимулируют развитие органов размножения, созревание половых клеток и формирование вторичных половых признаков, т. е. особенностей строения скелета, развития мускулатуры, распределения волосяного покрова и подкожного жира, строения гортани, тембра голоса и др. у мужчин и женщин.

Гипоталамус. Функционирование желез внутренней секреции, в совокупности образующих эндокринную систему, осуществляется в тесном взаимодействии друг с другом и взаимосвязи с нервной системой. Вся информация из внешней и внутренней среды организма человека поступает в соответствующие зоны коры больших полушарий и другие отделы мозга, где осуществляется ее переработка и анализ. От них информационные сигналы передаются в гипоталамус — подбугровую зону промежуточного мозга, и в ответ на них он вырабатывает регуляторные гормоны, поступающие в гипофиз и через него оказывающие свое регулирующее воздействие на деятельность желез внутренней секреции. Таким образом, гипоталамус выполняет координирующую и регулирующую функции в деятельности эндокринной системы человека.

Классификация гормонов. По химической природе гормоны делятся на следующие группы:

  • пептидные – гормоны гипоталамуса, гипофиза, инсулин, глюкагон, гормоны паращитовидных желез;
  • производные аминокислот – адреналин, тироксин;
  • стероидные – глюкокортикоиды, минералокортикоиды, мужские и женские половые гормоны;
  • эйкозаноиды – гормоноподобные вещества, которые оказывают местное действие; они являются производными арахидоновой кислоты (полиненасыщенная жирная кислота).

По действию на биохимические процессы и функции гормоны делятся на:

  • гормоны, регулирующие обмен веществ (инсулин, глюкагон, адреналин, кортизол);
  • гормоны, регулирующие обмен кальция и фосфора (паратиреоидный гормон, кальцитонин, кальцитриол);
  • гормоны, регулирующие водно-солевой обмен (альдостерон, вазопрессин);
  • гормоны, регулирующие репродуктивную функцию (женские и мужские половые гормоны);
  • гормоны, регулирующие функции эндокринных желёз (адренокортикотропный гормон, тиреотропный гормон, лютеинизирующий гормон, фолликулостимулирующий гормон, соматотропный гормон);
  • гормоны стресса (адреналин, глюкокортикоиды и др.);
  • гормоны, влияющие на ВНД (память, внимание, мышление, поведение, настроение).
Читать еще:  Что такое рис и как он устроен

Свойства гормонов.

  • Высокая биологическая активность. Концентрация гормонов в крови очень мала, но их действие сильно выражено, поэтому даже небольшое увеличение или уменьшение уровня гормона в крови вызывает различные, часто значительные, отклонения в обмене веществ и функционировании органов и может привести к патологии.
  • Короткое время жизни, обычно от нескольких минут до получаса, после чего гормон инактивируется или разрушается. Но с разрушением гормона его действие не прекращается, а может продолжаться в течение часов и даже суток.
  • Дистантность действия. Гормоны вырабатываются в одних органах (эндокринных железах), а действуют в других (тканях- мишенях).
  • Высокая специфичность действия. Гормон оказывает своё действие только после связывания с рецептором. Рецептор – это сложный белок-гликопротеин, состоящий из белковой и углеводной частей. Гормон связывается именно с углеводной частью рецептора. Причём строение углеводной части имеет уникальную химическую структуру и соответствует пространственному строению гормона. Поэтому гормон безошибочно, точно, специфично связывается только со своим рецептором, несмотря на малую концентрацию гормона в крови.

Типы биологического действия гормонов:

  • Метаболическое – действие гормона на организм проявляется регуляцией обмена веществ (например, инсулин, глюкокортикоиды, глюкагон).
  • Морфогенетическое – гормон действует на рост, деление и дифференцировку клеток в онтогенезе (например, соматотропный гормон, половые гормоны, тироксин).
  • Кинетическое или пусковое – гормоны способны запускать функции (например, пролактин – лактацию, половые гормоны – функцию половых желёз).
  • Корригирующее. Гормонам принадлежит важнейшая роль в адаптации человека к различным факторам внешней среды. Гормоны изменяют обмен веществ, поведение и функции органов так, чтобы приспособить организм к изменившимся условиям существования.

Гормоны: классификация и источники получения; биологическая роль.

Гормоны— сигнальные химические вещества, выделяемые эндокринными железами непосредственно в кровь и оказывающие сложное и многогранное воздействие на организм в целом либо на определённые органы и ткани-мишени. Гормоны служат гуморальными (переносимыми с кровью) регуляторами определённых процессов в определённых органах и системах.

Химическая природа почти всех известных гормонов выяснена в деталях (включая первичную структуру белковых и пептидных гормонов), однако до настоящего времени не разработаны общие принципы их номенклатуры. Химические наименования многих гормонов точно отражают их химическую структуру и очень громоздкие. Поэтому чаще применяются тривиальные названия гормонов. Принятая номенклатура указывает на источник гормона (например, инсулин – от лат. insula – островок) или отражает его функцию (например, пролактин, вазопрессин). Для некоторых гормонов гипофиза (например, лютеинизирующего и фолликулостимулирующего), а также для всех гипоталамических гормонов разработаны новые рабочие названия.

Аналогичное положение существует и в отношении классификации гормонов. Гормоны классифицируют в зависимости от места их природного синтеза, в соответствии с которым различают гормоны гипоталамуса, гипофиза, щитовидной железы, надпочечников, поджелудочной железы, половых желез, зобной железы и др. Однако подобная анатомическая классификация недостаточно совершенна, поскольку некоторые гормоны или синтезируются не в тех железах внутренней секреции, из которых они секретируются в кровь (например, гормоны задней доли гипофиза, вазопрессин и окситоцин синтезируются в гипоталамусе, откуда переносятся в заднюю долю гипофиза), или синтезируются и в других железах (например, частичный синтез половых гормонов осуществляется в коре надпочечников, синтез простагландинов происходит не только в предстательной железе, но и в других органах) и т.д. С учетом этих обстоятельств были предприняты попытки создания современной классификации гормонов, основанной на их химической природе. В соответствии с этой классификацией различают три группы истинных гормонов: 1) пептидные и белковые гормоны, 2) гормоны – производные аминокислот и 3) гормоны стероидной природы. Четвертую группу составляют эйкозаноиды – гормоноподоб-ныевещества, оказывающие местное действие.

Пептидные и белковые гормоны включают от 3 до 250 и более аминокислотных остатков. Это гормоны гипоталамуса и гипофиза(тироли-берин, соматолиберин, соматостатин, гормон роста, кортикотропин, тире-отропин и др. – см. далее), а также гормоны поджелудочной железы (инсулин, глюкагон). Гормоны – производные аминокислот в основном представлены производнымиаминокислоты тирозина. Это низкомолекулярные соединения адреналин и норадреналин, синтезирующиеся в мозговом вещественадпочечников, и гормоны щитовидной железы (тироксин и его производные). Гормоны 1-й и 2-й групп хорошо растворимы в воде.

Гормоны стероидной природы представлены жирорастворимыми гормонами коркового вещества надпочечников (кортикостероиды),половыми гормонами (эстрогены и андрогены), а также гормональной формой витамина D.

Эйкозаноиды, являющиеся производными полиненасыщенной жирной кислоты (арахидоновой), представлены тремя подклассами соединений: простагландины, тромбоксаны и лейкотриены. Эти нерастворимые в воде и нестабильные соединения оказывают свое действие на клетки, находящиеся вблизи их места синтеза.

Далее будут рассмотрены химическое строение, функции и пути биосинтеза и распада основных классов гормонов, подразделяющихся на отдельные группы в соответствии с классификацией, в основе которой лежит химическая природа гормонов.

Гипоталамус служит местом непосредственного взаимодействия высших отделов ЦНС и эндокринной системы. Природа связей, существующих между ЦНС и эндокринной системой, стала проясняться в последние десятилетия, когда из гипоталамуса были выделены первые гуморальные факторы, оказавшиеся гормональными веществами с чрезвычайно высокой биологической активностью. Потребовалось немало труда и экспериментального мастерства, чтобы доказать, что эти вещества образуются в нервных клеткахгипоталамуса, откуда по системе портальных капилляров достигают гипофиза и регулируют секрецию гипофизарных гормонов, точнее их освобождение (возможно, и биосинтез). Эти вещества получили сначала наименование нейрогормонов, а затем рилизинг-факторов(от англ. release – освобождать), или либеринов. Вещества с противоположным действием, т.е. угнетающие освобождение (и, возможно,биосинтез) гипофизар-ных гормонов, стали называть ингибирующими факторами, или статинами. Таким образом, гормонамгипоталамуса принадлежит ключевая роль в физиологической системе гормональной регуляции многосторонних биологических функций отдельных органов, тканей и целостного организма.

К настоящему времени в гипоталамусе открыто 7 стимуляторов (либе-рины) и 3 ингибитора (статины) секреции гормонов гипофиза, а именно: кортиколиберин, тиролиберин, люлиберин, фоллилиберин, соматолиберин, пролактолиберин, меланолиберин, соматостатин, пролактостатин и меланостатин (табл. 8.1). В чистом виде выделено 5 гормонов, для которых установлена первичная структура, подтвержденная химическим синтезом.

Большие трудности при получении гормонов гипоталамуса в чистом виде объясняются чрезвычайно низким содержанием их в исходнойткани. Так, для выделения всего 1 мг тиролиберина потребовалось переработать 7 т гипоталамусов, полученных от 5 млн овец.

Следует отметить, что не все гормоны гипоталамуса, по-видимому, строго специфичны в отношении одного какого-либо гипофизарногогормона. В частности, для тиролиберина показана способность освобождать, помимо тиротропина, также пролактин, а для люлиберина, помимо лютеи-низирующего гормона,– также фолликулостимулирующий гормон.

1 Гипоталамические гормоны не имеют твердо установленных наименований. Рекомендуется в первой части названия гормона гипофиза добавлять окончание «либерин»; например, «тиролиберин» означает гормон гипоталамуса, стимулирующий освобождение (и, возможно, синтез) тиротропина — соответствующего гормона гипофиза. Аналогичным образом образуют названия факторов гипоталамуса, ингибирующих освобождение (и, возможно, синтез) троп-ных гормонов гипофиза,- добавляют окончание «статин». Например, «соматостатин» означает гипоталамический пептид, ингибирующий освобождение (или синтез) гормона роста гипофиза -соматотропина.

Установлено, что по химическому строению все гормоны гипоталамуса являются низкомолекулярными пептидами, так называемыми олигопепти-дами необычного строения, хотя точный аминокислотный состав и первичная структура выяснены не для всех. Приводим полученные к настоящему времени данные о химической природе шести из известных 10 гормонов гипоталамуса.

1. Тиролиберин(Пиро-Глу–Гис–Про–NH2):

Тиролиберин представлен трипептидом, состоящим из пироглутаминовой (циклической) кислоты, гистидина и пролинамида, соединенных пептидными связями. В отличие от классических пептидов он не содержит свободных NH2— и СООН-групп у N- и С-концевыхаминокислот.

2. Гонадолиберинявляется декапептидом, состоящим из 10 аминокислот в последовательности:

Концевая С-аминокислота представлена глицинамидом.

3. Соматостатинявляется циклическим тетрадекапептидом (состоит из 14 аминокислотных остатков) :

Отличается этот гормон от двух предыдущих, помимо циклической структуры, тем, что не содержит на N-конце пироглутаминовойкислоты: дисульфидная связь образуется между двумя остатками цистеина в 3-м и 14-м положениях. Следует отметить, что синтетический линейный аналог соматостатина также наделен аналогичной биологической активностью, что свидетельствует о несущественности дисульфидного мостика природного гормона. Помимо гипоталамуса, соматостатин продуцируется нейронамицентральной и периферической нервных систем, а также синтезируется в S-клетках панкреатических островков (островков Лангерганса) в поджелудочной железе и клетках кишечника. Он оказывает широкий спектр биологического действия; в частности, показано ингибирующее действие на синтез гормона роста в аденогипофизе, а также прямое тормозящее действие его на биосинтез инсулина иглюкагона в β- и α-клетках островков Лангерганса.

4. Соматолибериннедавно выделен из природных источников. Он представлен 44 аминокислотными остатками с полностью раскрытой последовательностью. Биологической активностью соматолиберина наделен, кроме того, химически синтезированный декапептид:

Этот декапептид стимулирует синтез и секрецию гормона роста гипофиза соматотропина.

5. Меланолиберин, химическая структура которого аналогична структуре открытого кольца гормона окситоцина (без трипептидной боковой цепи), имеет следующее строение:

6. Меланостатин(меланотропинингибирующий фактор) представлен или трипептидом: Пиро-Глу–Лей–Гли-NН2, или пентапептидом со следующей последовательностью:

Необходимо отметить, что меланолиберин оказывает стимулирующее действие, а меланостатин, напротив, ингибирующее действие на синтез и секрецию меланотропина в передней доле гипофиза.

Получение

Получение. Небелковые гормоны, пептидные гормоны небольшой мол. массы и активные фрагменты нек-рых полипептидных гормонов синтезируют. Полипептидные и белковые гормоны получают гл. обр. экстрагированием из желез убойного скота и послед. очисткой. Разработаны способы получения нек-рых пептидных гормонов (напр., инсулина и соматотропина) с использованием генной инженерии. Метод основан на выделении гена соответствующего гормона и включении его в геном бактериальных клеток, приобретающих т. обр. способность к синтезу данного гормона. В результате размножения образуются большие массы бактерий, активно синтезирующих гормоны.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Читать еще:  Тошнота при месячных причины развития симптомы нормы и патологии лечение

Классификация гормонов. Роль гормонов в организме человека

Гормонами называются химические составляющие целостной системы регуляции функций организма. Это различные по своей природе вещества, способные передавать сигналы клеткам. Результатом данных взаимодействий являются изменение направлений и интенсивности метаболизма, рост и развитие организма, запуск важных функций или их угнетение и коррекция.

Гормон – это органическое химическое вещество, синтез которого протекает в эндокринных железах или в эндокринных участках желез смешанной секреции. Они выделяются непосредственно во внутреннюю среду, по которой распространяются и хаотично переносятся к органам-мишеням. Здесь они способны оказывать биологическое действие, которое реализуется посредством рецепторов. Потому каждый гормон имеет исключительную специфичность под определенный рецептор. Это означает, что данные вещества влияют на одну функцию или процесс в организме. Классификация гормонов по действию, тропности к тканям и по химической структуре это показывает более наглядно.

Общее представление о значении гормонов

Современная классификация гормонов рассматривает данные вещества с множества точек зрения. И они объединены в одном: гормонами называются лишь органические вещества, синтез которых протекает только в организме. Их наличие свойственно практически всем позвоночным, у которых регуляция функций тела также представляет собой сочетанную работу гуморальной и нервной систем. Причем в филогенезе гуморальная регуляторная система появилась раньше, нежели нервная. Еще у примитивных животных она имелась, хотя отвечала за самые базовые функции.

Гормоны и биологически активные вещества

Считается, что сама система биологических активных веществ (БАВ) и специфичных к ним рецепторов характерна даже для клетки. Однако понятия «гормон» и «БАВ» не тождественны. Гормоном называется БАВ, который секретируется во внутреннюю среду организма и оказывает эффект на отдаленную группу клеток. БАВ, в свою очередь, воздействует местно. Примерами БАВ, которые также называются гормоноподобными веществами, являются кейлоны. Эти вещества выделяются популяцией клеток, где ингибируют размножение и регулируют апоптоз. Примером БАВ также являются простогландины. Современная классификация гормонов выделяет для них специальную группу эйкозаноидов. Они предназначены для местной регуляции воспаления в тканях и для осуществления процессов гемостаза на уровне артериол.

Химическая классификация гормонов

Гормоны по химическому строению поделены на несколько групп. Это разделяет их и по механизму действия, потому как у данных веществ разные показатели тропности к воде и липидам. Итак, химическая классификация гормонов выглядит так:

  • пептидная группа (выделяются гипофизом, гипоталамусом, поджелудочной и паращитовидными железами);
  • стероидная группа (выделяются эндокринной частью мужских половых желез и корковыми участками надпочечников);
  • группа производных аминокислот (образуются щитовидной железой и мозговым надпочечниковым слоем);
  • группа эйкозаноидов (выделяются клетками, синтезируются из арахидоновой кислоты).

Примечательно, что половые гормоны женщин также внесены в группу стероидных. Однако стероидами они по большому счету не являются: влияние гормонов данного типа не связано с анаболическим эффектом. При этом их метаболизм не приводит к образованию 17-кетостероидов. Гормоны яичников хоть и похожи структурно на другие стероиды, но таковыми не являются. Поскольку они синтезируются из холестерина, то для упрощения базовых химических классификаций они причисляются к остальным стероидам.

Классификация по месту синтеза

Гормональные вещества можно разделить и по месту синтеза. Некоторые образуются в периферических тканях, тогда как другие – в центральной нервной системе. От этого зависит способ секреции и выделения веществ, что обуславливает особенности реализации их эффектов. Классификация гормонов по месту выглядит так:

  • гипоталамические гормоны (рилизинг-факторы);
  • гипофизарные (тропные гормоны, вазопрессин и окситоцин);
  • щитовидные (кальцитонин, тетрайодтиронин и трийодтиронин);
  • паращитовидные (паратиреоидный гормон);
  • недпочечниковые (норадреналин, адреналин, альдостерон, кортизол, андрогены);
  • половые (эстрогены, андрогены);
  • поджелудочные (глюкагон, инсулин);
  • тканевые (лейкотриены, простагландины);
  • гормоны APUD (мотилин, гастрин и прочие).

Последняя группа гормональных веществ до конца не изучена. Она синтезируется в самой большой группе эндокринных желез, расположенных в верхних отделах кишечника, в печени и поджелудочной железе. Их целью является регуляция секреции экзокринных пищеварительных желез и моторики кишечника.

Классификация гормонов по типу эффекта

Различные гормональные вещества оказывают различное действие в биологических тканях. Они разделены на следующие группы:

  • регуляторы обмена веществ (глюкагон, трийодтиронин, тетрайодтиронин, кортизол, инсулин);
  • регуляторы функций других желез внутренней секреции (рилизинг-факторы гипоталамуса, тропные гормоны гипофиза);
  • регуляторы обмена кальция и фосфора (паратиреоидный гормон, кальцитонин и кальцитриол);
  • регуляторы водно-солевого равновесия (вазопрессин, альдостерон);
  • регуляторы репродуктивной функции (половые гормоны);
  • стрессорные гормоны (норадреналин, адреналин, кортизол);
  • регуляторы пределов и скорости роста, клеточного деления (соматотропин, инсулин, тетрайодтиронин);
  • регуляторы функций центральной нервной системы, лимбической системы (кортизол, адренокортикотропный гормон, тестостерон).

Секреция и транспортировка гормонов

Секреция гормонов происходит сразу после их синтеза. Они попадают непосредственно в кровь или в тканевую жидкость. Последнее место секреции характерно для эйкозаноидов: они не должны действовать далеко от клетки, потому как регулируют функции целой тканевой популяции. А гормоны яичников, гипофиза, поджелудочной железы и другие должны с кровью разноситься по организму в поисках органов-мишеней, имеющих специфические для них рецепторы. Из крови они попадают в межклеточную жидкость, где направляются к клетке органа-мишени.

Передача сигнала на рецептор

Указанная выше классификация гормонов отражает эффекты действия веществ на ткани и органы. Хотя это возможно только после связывания химического вещества с рецептором. Последние бывают разными и располагаются как на поверхности клетки, так и в цитоплазме, на ядерной мембране и внутри ядра. Потому по способу передачи сигнала вещества делятся на два типа:

  • внеклеточный механизм передачи;
  • внутриклеточная передача сигнала.

Данная базовая классификация гормонов позволяет сделать выводы о скорости передачи сигналов. Например, внеклеточный механизм значительно быстрее, чем внутриклеточный. Он характерен для адреналина, норадреналина и других пептидных гормонов. Внутриклеточный механизм характерен для липофильных стероидов. Более того, выгода для организма достигается быстрее при синтезе именно пептидов. Ведь выработка гормонов-стероидов гораздо более медленная, а их механизм передачи сигнала тоже замедляется необходимостью синтеза и созревания белка.

Характеристика типов передачи сигналов

Внеклеточный механизм характерен для пептидных гормонов, которые не могут попасть за цитоплазматическую мембрану в цитоплазму без специфического белка-переносчика. Такового для него не предусмотрено, а сам сигнал передается через аденилатциклазную систему путем изменения конформации рецепторных комплексов.

Внутриклеточный механизм значительно более простой. Он осуществляется после проникновения липофильного вещества внутрь клетки, где оно встречается с цитоплазматическим рецептором. С ним он образует гормон-рецепторный комплекс, который проникает в ядро и оказывает воздействие на специфические гены. Их активация приводит к запуску белкового синтеза, что и является молекулярным эффектом данного гормона. Фактический эффект оказывается уже белком, который регулирует заданную функцию после своего синтеза и образования.

Классификация гормонов

Гормоны классифицируются по химическому строению, биологическим функциям, месту образования и механизму действия.

Классификация по химическому строению.

По химическому строению гормоны делят на 3 группы (табл. 12.1):

1. пептидные или белковые;

2. производные аминокислот;

4. производные арахидоновой кислоты – эйкозаноиды (оказывают местное действие)

Классификация гормонов по химическому строению

Пептидные (белковые)

6. Лютеинеизирующий гормон

7. Фолликулостимули-рующий гормон

8. Мелоноцитстимули-рующий гормон

Производные аминокислот

3. Трийодтиронин (Т 3)

Стероиды

Клетки некоторых органов, не относящихся к железам внутренней секреции (клетки ЖКТ, клетки почек, эндотелия и др.), также выделяют гормоноподобные вещества (эйкозаноиды), которые действуют в местах их образования.

Классификация гормонов по биологическим функциям

По биологическим функциям гормоны можно разделить на несколько групп (табл. 12.2.)

Таблица 12.2. Классификация гормонов по биологическим функциям.

Регулируемые процессыГормоны
Обмен углеводов, липидов, аминокислот.Инсулин, глюкагон, адреналин, кортизол,тироксин,соматотропин.
Водно-солевой обмен.Альдостерон, вазопрессин.
Обмен кальция и фосфатов.Паратгормон, кальцитонин, кальцитриол.
Репродуктивная функция.Эстрогены, андрогены, гонадотропные гормоны.
Синтез и секреция гормонов эндокринных желез.Тропные гормоны гипофиза, либерины и статины гипоталамуса.

Эта классификация условна, поскольку одни и те же гормоны могут выполнять разные функции. Например, адреналин участвует в регуляции обмена липидов и углеводов и, кроме этого, регулирует артериальное давление, частоту сердечных сокращений, сокращение гладких мышц. Эстрогены регулируют не только репродуктивную функцию, но и оказывают влияние на обмен липидов, индуцируют синтез факторов свертывания крови.

Классификация по месту образования

По месту образования гормоны делятся на гормоны:

3. щитовидной железы

4. паращитовидных желез

5. поджелудочной железы

7. половых желез.

Классификация по механизму действия

По механизму действия гормоны можно разделить на 3 группы:

1. Гормоны, не проникающие в клетку и взаимодействующие с мембранными рецепторами (пептидные, белковые гормоны, адреналин). Сигнал передается внутрь клетки с помощью внутриклеточных посредников (вторичные мессенджеры). Основной конечный эффект – изменение активности ферментов;

2. гормоны, проникающие в клетку (стероидные гормоны, тиреоидные гормоны). Их рецепторы находятся внутри клеток. Основной конечный эффект – изменение количества белков-ферментов через экспрессию генов;

3. гормоны мембранного действия (инсулин, тиреоидные гормоны). Гормон является аллостерическим эффектором транспортных систем мембран. Связывание гормона с мембранным рецептором приводит к изменению проводимости ионных каналов мембраны.

Основные свойства и особенности действия гормонов

1. Высокая биологическая активность. Гормоны регулируют метаболизм в очень малых концентрациях – 10–8 – 10–11М.

2. Дистантность действия. Гормоны синтезируются в эндокринных железах, а биологические эффекты оказывают в других тканях-мишенях.

3. Обратимость действия. Обеспечивается адекватным ситуации дозированным освобождением и последующими механизмами инактивации гормонов. Время действия гормонов различно:

• пептидные гормоны: сек – мин;

• белковые гормоны: мин – часы;

• стероидные гормоны: часы;

4. Специфичность биологического действия.

5. Плейотропность (многообразие) действия. Например, катехоламины рассматривались как краткосрочные гормоны стресса. Затем было выявлено, что они участвуют в регуляции матричных синтезов и процессов, определяемых геномом: памяти, обучения, роста, деления, дифференциации клеток.

6. Дуализм регуляций (двойственность). Так, адреналин как суживает, так и расширяет сосуды. Йодтиронины в больших дозах увеличивают катаболизм белков, в малых – стимулируют анаболизм.

Ссылка на основную публикацию
Adblock
detector